Improving Performance of a Binary Classifier by Training Set Selection
نویسندگان
چکیده
In the paper a method of training set selection, in case of low data availability, is proposed and experimentally evaluated with the use of k-NN and neural classifiers. Application of proposed approach visibly improves the results compared to the case of training without postulated enhancements. Moreover, a new measure of distance between events in the pattern space is proposed and tested with k-NN model. Numerical results are very promising and outperform the reference literature results of k-NN classifiers built with other distance measures.
منابع مشابه
Feature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملHit Miss Networks with Applications to Instance Selection
In supervised learning, a training set consisting of labeled instances is used by a learning algorithm for generating a model (classifier) that is subsequently employed for deciding the class label of new instances (for generalization). Characteristics of the training set, such as presence of noisy instances and size, influence the learning algorithm and affect generalization performance. This ...
متن کاملA research on classification performance of fuzzy classifiers based on fuzzy set theory
Due to the complexities of objects and the vagueness of the human mind, it has attracted considerable attention from researchers studying fuzzy classification algorithms. In this paper, we propose a concept of fuzzy relative entropy to measure the divergence between two fuzzy sets. Applying fuzzy relative entropy, we prove the conclusion that patterns with high fuzziness are close to the classi...
متن کاملBoosting SVM Classifiers with Logistic Regression
The support vector machine classifier is a linear maximum margin classifier. It performs very well in many classification applications. Although, it could be extended to nonlinear cases by exploiting the idea of kernel, it might still suffer from the heterogeneity in the training examples. Since there are very few theories in the literature to guide us on how to choose kernel functions, the sel...
متن کاملDimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)
This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008